Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 189: 114764, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36870135

ABSTRACT

To assess the progression of ocean acidification in the South Yellow Sea (SYS), the aragonite saturation state (Ωarag) was determined from dissolved inorganic carbon (DIC) and total alkalinity (TA) in the surface and bottom waters of the SYS in spring and autumn. The Ωarag exhibited large spatiotemporal variations in the SYS; DIC was a major factor controlling the Ωarag variations, whereas temperature, salinity, and TA were minor factors. Surface DIC concentrations were mainly influenced by the lateral transport of the DIC-enriched Yellow River waters and DIC-depleted East China Sea Surface Water; bottom DIC concentrations were affected by aerobic remineralization in spring and autumn. Ocean acidification is now seriously progressing in the SYS, particularly in the Yellow Sea Bottom Cold Water (YSBCW) where the mean value of Ωarag substantially decreased from 1.55 in spring to 1.22 in autumn. All Ωarag values measured in the YSBCW in autumn were lower than the critical threshold value of 1.5 necessary for the survival of calcareous organisms.


Subject(s)
Calcium Carbonate , Seawater , Calcium Carbonate/analysis , Hydrogen-Ion Concentration , Oceans and Seas , China , Water
2.
Sci Total Environ ; 807(Pt 3): 151781, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34801494

ABSTRACT

The central-eastern Yellow Sea is an important region for transporting organic matter (OM) to the Pacific Ocean, however, there is limited information available regarding the characteristics and sources of OM in this area. The present study investigated the concentrations and stable isotopic compositions of carbon (δ13C) and nitrogen (δ15N) for particulate matter and sediment in the central-eastern Yellow Sea during April 2019. The physicochemical properties (i.e., salinity, temperature, fluorescence, and nutrients), size-fractionated phytoplankton biomass (Chl-a), and concentration and fluorescence characteristics of dissolved organic matter (DOM) were also determined. The satellite SST and Chl-a data indicated that mixing cold and warm water masses were observed. Phytoplankton blooms occurred a few days before our sampling campaign. Considering the high concentration of suspended solids in the bottom layer, resuspended sediment caused by tidal currents could be a major source of OM in coastal areas. The δ13C values of particulate organic matter (POM) in the coastal area were higher (-23 to -22‰) than those of OM from terrestrial sources (approximately -28 to -27‰). Instead, the lowest δ13C values were observed in the central part of our study area, where the relative abundance of picophytoplankton was high. These results indicated that phytoplankton-derived OM after phytoplankton spring blooms in the coastal area could be the primary source of OM rather than terrestrial origins. In addition, the source of OM that presented low δ13C values could be picophytoplankton-derived OM. The characteristics of DOM were related to biological processes (mediated by phytoplankton and bacteria) and resuspension of sedimentary organic matter. We did not detect an influx of large amounts of terrestrial OM in coastal sediments. Overall, the source and characteristics of OM appeared to be influenced by the hydrodynamics and the distribution properties of lower trophic-level organisms in the central-eastern Yellow Sea during the spring season.


Subject(s)
Hydrodynamics , Phytoplankton , Dissolved Organic Matter , Pacific Ocean
3.
Sci Rep ; 11(1): 9458, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947914

ABSTRACT

Cyanobacteria are ubiquitous in marine environments and play an important role as primary producers. Some cyanobacteria, the so-called cyanobionts (cyanobacterial symbionts), have a symbiotic relationship with unicellular organisms. Among these relationships, in particular, the nature (e.g., genetic diversity, host or cyanobiont specificity, and cyanobiont seasonality) of the cyanobiont-dinoflagellate host consortia remains poorly understood. In this study, 16S rDNA of cyanobionts in 138 single host cells isolated over four seasons from temperate waters were sequenced using the MiSeq platform. Genetic analysis of cyanobionts from the dinoflagellate host Ornithocercus revealed that three genetic types of Synechococcales cyanobionts occurred in a wide range of water temperatures (11-24 °C), and their distribution seemed to be closely associated with variations in salinity. Furthermore, a certain degree of host (or cyanobiont) specificity in cyanobionts (or the host) among Ornithocercus species as well as among other dinophysoid species (i.e. Amphisolenia, Citharistes, and Histioneis), was observed. In addition to the Synechococcales cyanobionts, this study identified OTU sequences affiliated with Vampirovibrionales and Chroococcidiopsidales in some Ornithocercus cells, suggesting that Ornithocercus species are an additional habitat for these bacterial groups.


Subject(s)
Cyanobacteria/genetics , Dinoflagellida/genetics , Genetic Variation/genetics , Host Specificity/genetics , Symbiosis/genetics , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Seawater , Temperature
4.
Mar Pollut Bull ; 163: 111912, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340908

ABSTRACT

Heavy metals in coastal sediments and seagrass (Enhalus acoroides) were studied to assess the pollution level and to understand the bioaccumulation of metals on different organs. The mean of metal concentrations in sediments were in the following order: Cr > Ni > As>Zn > Cu > Co > Pb > Cd > Hg. The results of principal component analysis indicate that Cr, Ni, Cu, Zn, As and Hg are derived from natural sources but Cd and Pb seems to be of anthropogenic sources. Cr, Ni, Cu, Zn, Cd and Pb in the coastal sediments were at low ecological risk level. As and Hg presented the highest ecological risk among all metals. The mean concentrations of Cr, Ni, Cu, Zn, Cd, and Hg were higher in leaves of E. acoroides than in roots. Significant correlations (p < 0.05) for Cr, Ni, Cu, Zn, and Pb in between sediments and in E. acoroides both leaves and roots. High bioconcentration factor (BCF) were calculated for Zn, Cd, and Hg.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bioaccumulation , China , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Palau , Risk Assessment , Water Pollutants, Chemical/analysis
5.
Front Microbiol ; 11: 567431, 2020.
Article in English | MEDLINE | ID: mdl-33042072

ABSTRACT

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton.

6.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Article in English | MEDLINE | ID: mdl-30011002

ABSTRACT

To understand prokaryotic responses during a spring bloom in offshore shelf waters, prokaryotic parameters were measured daily at a station located in the middle of the East China Sea over a six-week period from March 25 to May 19. The site experienced a phytoplankton bloom in late April, triggering changes in prokaryotic abundance and production after a lag of approximately one week. Before the bloom, changes in prokaryotic composition were small. Both during the bloom and in the post-bloom period, successive changes among bacterial groups were apparent. A SAR11 group became more dominant during the bloom period, and diverse groups belonging to the Flavobacteriia occurred dominantly during both the bloom and post-bloom periods. However, bacterial community changes at the species level during the bloom and post-bloom periods occurred rapidly in a time scale of a few days. Especially, NS5, NS4 and Formosa bacteria belonging to Flavobacteriia and bacteria belonging to Halieaceae and Arenicellaceae families of Gammaproteobacteria showed a successive pattern with large short-term variation during the period. The changes in prokaryotic composition were found to be related to phytoplankton biomass and composition, as well as seawater temperature and variations in nutrients.


Subject(s)
Flavobacteriaceae/growth & development , Gammaproteobacteria/growth & development , Phytoplankton/growth & development , Seawater/microbiology , Biomass , China , Flavobacteriaceae/classification , Gammaproteobacteria/classification , Oceans and Seas , Seasons
7.
Stand Genomic Sci ; 12: 65, 2017.
Article in English | MEDLINE | ID: mdl-29093768

ABSTRACT

The genus Marinobacterium belongs to the family Alteromonadaceae within the class Gammaproteobacteria and was reported in 1997. Currently the genus Marinobacterium contains 16 species. Marinobacterium rhizophilum CL-YJ9T was isolated from sediment associated with the roots of a plant growing in a tidal flat of Youngjong Island, Korea. The genome of the strain CL-YJ9T was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: KMG project. Here we report the main features of the draft genome of the strain. The 5,364,574 bp long draft genome consists of 58 scaffolds with 4762 protein-coding and 91 RNA genes. Based on the genomic analyses, the strain seems to adapt to osmotic changes by intracellular production as well as extracellular uptake of compatible solutes, such as ectoine and betaine. In addition, the strain has a number of genes to defense against oxygen stresses such as reactive oxygen species and hypoxia.

8.
PLoS One ; 12(6): e0179422, 2017.
Article in English | MEDLINE | ID: mdl-28622375

ABSTRACT

Benthic diatoms isolated from tidal flats in the west coast of Korea were identified through both traditional morphological method and molecular phylogenetic method for methodological comparison. For the molecular phylogenetic analyses, we sequenced the 18S rRNA and the ribulose bisphosphate carboxylase large subunit coding gene, rbcL. Further, the comparative analysis allowed for the assessment of the suitability as a genetic marker for identification of closely related benthic diatom species and as potential barcode gene. Based on the traditional morphological identification system, the 61 isolated strains were classified into 52 previously known taxa from 13 genera. However, 17 strains could not be classified as known species by morphological analyses, suggesting a hidden diversity of benthic diatoms. The Blast search on NCBI's Genebank indicated that the reference sequences for most of the species were absent for the benthic diatoms. Of the two genetic markers, the rbcL genes were more divergent than the 18S rRNA genes. Furthermore, a long branch attraction artefact was found in the 18S rRNA phylogeny. These results suggest that the rbcL gene is a more appropriate genetic marker for identification and classification of benthic diatoms. Considering their high diversity and simple shapes, and thus the difficulty associated with morphological classification of benthic diatoms, a molecular approach could provide a relatively easy and reliable classification system. However, this study suggests that more effort should be made to construct a reliable database containing polyphasic taxonomic data for diatom classification.


Subject(s)
DNA Barcoding, Taxonomic , Diatoms , Phylogeny , RNA, Ribosomal, 18S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Diatoms/classification , Diatoms/genetics , Oceans and Seas , Republic of Korea
9.
Sci Rep ; 7: 41810, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28155909

ABSTRACT

The comparison of sediment trap data with physical and biogeochemical variables in the surface water column of the Tropical Northwestern Pacific Ocean (TNWPO) indicated that the magnitude of the springtime biological pump has reduced with time due to a corresponding decrease in the biomass of cyanobacterial N2 fixer. The decrease in the biomass of N2 fixer likely resulted from a reduction in phosphate concentrations in response to surface water warming and consequent shoaling of the mixed layer depth during the study period (2009-2014). The same reduction in biological pump was also observed during summer. However, the cause of the summer reduction remains uncertain and is worth assessing in future studies. Our findings have major implications for predicting future trends of the biological pump in the TNWPO, where significant warming has occurred.


Subject(s)
Biomass , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Membrane Transport Proteins/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Carbon/metabolism , Pacific Ocean , Phytoplankton/physiology , Seasons
10.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 2137-8, 2016 05.
Article in English | MEDLINE | ID: mdl-25423528

ABSTRACT

The complete mitochondrial DNA of tube-dwelling diatom, Berkeleya fennica was sequenced and characterized. The circular mitogenome contains 63 genes in 35,509 bp (29.7% GC), including 36 protein-coding, 25 tRNA, 2 rRNA genes. Most of the protein-coding (27) genes have usual ATG start codon, except 9 genes such as ATA for rps8; ATC for rps14; ATT for rps12 and orf51; GTG for nad5; TTA for cox3, nad4 and orf147; and TTG for cob. The nad11 and rrs are the only interrupted genes in the mitogenome. Gene content and synteny of B. fennica are very similar to Phaeodactylum tricoruntum (NC_016739). Absence of repeat region in B. fennica resulted in mitogenome size difference to P. tricoruntum. A new mitogenome will provide useful information for mitochondrial genome diversity and evolution of the diatoms.


Subject(s)
Diatoms/genetics , Genome, Mitochondrial , Repetitive Sequences, Nucleic Acid/genetics , Base Pairing/genetics , Base Sequence , Genes, Mitochondrial , RNA, Transfer/genetics
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 2139-40, 2016 05.
Article in English | MEDLINE | ID: mdl-25423527

ABSTRACT

The complete mitochondrial DNA of an ecologically important crustacean mud shrimp, Upogebia yokoyai (Decapoda, Crustacea) was sequenced. We used next generation sequencing strategy for total genomic DNA and organelle genome pipeline for mitogenome assembly. A newly determined mitogenome was 16,063 bp in total length with 28% of GC content. Thirty-seven genes were identified including 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. We found ten case of overlapping between neighboring genes. Based on genome comparison, the mitogenome of U. yokoyai shows general crustacean gene content and identical synteny to the sister species, such as U. major and U. pusilla. Our results will provide useful information for mitochondrial genome diversity and evolution of the Crustacea.


Subject(s)
Decapoda/genetics , Genome, Mitochondrial , Animals , Base Pairing/genetics , DNA, Mitochondrial/genetics , Gene Order , Genes, Mitochondrial , RNA, Transfer/genetics , Republic of Korea
12.
Mitochondrial DNA B Resour ; 1(1): 549-550, 2016 Jul 23.
Article in English | MEDLINE | ID: mdl-33473552

ABSTRACT

The complete mitochondrial DNA of biraphid benthic diatom, Navicula ramosissima TA439 was sequenced and characterized. The circular mitogenome contains 67 genes in 48,652 bp (31.1% GC), including 41 protein-coding, 24 transfer RNA (tRNA) and 2 rRNA genes. Twenty-four protein-coding sequences (CDS, 59%) have start with ATG codon and 17 CDS start with alternatives such as ATA (5), ATT (6), TTA (5) and TTG (1). The GC content of tRNA genes (42.1%) is relatively higher than those of the rRNA (35.2%) and CDS (30.5%). Three genes are consisted of multiple exons and introns, i.e. cox1 (three exons, two introns), rps11 (two exons, one intron), rrl (four exons, three introns). Phylogeny of diatoms based on mitogenome data (34 CDS, 8530 amino acids combined) supports the monophyly of Naviculales, including N. ramosissima (Naviculaceae), Berkeleya fennica (Berkeleyaceae), Fistulifera solaris (Stauroneidaceae) and Phaeodactylum tricornutum (Phaeodactylaceae). Mitogenome data may be useful for phylogenetic study of the diatoms and stramenopiles.

13.
Stand Genomic Sci ; 10: 98, 2015.
Article in English | MEDLINE | ID: mdl-26566423

ABSTRACT

Gracilimonas tropica Choi et al. 2009 is a member of order Sphingobacteriales, class Sphingobacteriia. Three species of the genus Gracilimonas have been isolated from marine seawater or a salt mine and showed extremely halotolerant and mesophilic features, although close relatives are extremely halophilic or thermophilic. The type strain of the type species of Gracilimonas, G. tropica DSM19535(T), was isolated from a Synechococcus culture which was established from the tropical sea-surface water of the Pacific Ocean. The genome of the strain DSM19535(T) was sequenced through the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes project. Here, we describe the genomic features of the strain. The 3,831,242 bp long draft genome consists of 48 contigs with 3373 protein-coding and 53 RNA genes. The strain seems to adapt to phosphate limitation and requires amino acids from external environment. In addition, genomic analyses and pasteurization experiment suggested that G. tropica DSM19535(T) did not form spore.

14.
PLoS One ; 10(1): e0116271, 2015.
Article in English | MEDLINE | ID: mdl-25615446

ABSTRACT

Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP­the most abundant DMS-producing gene­in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Lyases/genetics , Roseobacter/classification , Seawater/microbiology , DNA, Bacterial/analysis , Genes, Bacterial , Molecular Sequence Data , Pacific Ocean , Phylogeny , Roseobacter/enzymology , Roseobacter/genetics , Seawater/chemistry , Sequence Analysis, DNA/methods , Sulfides/metabolism , Sulfonium Compounds/metabolism
15.
Environ Sci Technol ; 48(9): 4750-6, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24724561

ABSTRACT

Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and ∼ 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.


Subject(s)
Carbon Dioxide/analysis , Sulfides/metabolism , Zooplankton/physiology , Animals , Atmosphere , Partial Pressure , Phytoplankton/metabolism , Phytoplankton/physiology , Seawater/chemistry , Sulfonium Compounds , Sulfur/metabolism , Zooplankton/metabolism
16.
Microbes Environ ; 29(1): 17-22, 2014.
Article in English | MEDLINE | ID: mdl-24389411

ABSTRACT

Synechococcus are distributed throughout the world's oceans and are composed of diverse genetic lineages. However, as they are much less abundant than Prochlorococcus in oligotrophic open oceans, their in-depth genetic diversity cannot be investigated using commonly used primers targeting both Prochlorococcus and Synechococcus. Thus, in this study, we designed a primer specific to the 16S-23S rRNA internal transcribed spacer (ITS) of the Synechococcus subcluster 5.1. Using the primer, we could selectively amplify Synechococcus sequences in oligotrophic seawater samples. Further, we showed that a barcoded amplicon pyrosequencing method could be applicable to investigate Synechococcus diversity using sequences retrieved in GenBank and obtained from environmental samples. Allowing sequence analyses of a large number of samples, this high-throughput method would be useful to study global biodiversity and biogeographic patterns of Synechococcus in marine environments.


Subject(s)
Biodiversity , High-Throughput Nucleotide Sequencing/methods , Seawater/microbiology , Synechococcus/genetics , Synechococcus/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Ecosystem , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Synechococcus/classification
17.
Nat Genet ; 46(1): 88-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270359

ABSTRACT

The shift from terrestrial to aquatic life by whales was a substantial evolutionary event. Here we report the whole-genome sequencing and de novo assembly of the minke whale genome, as well as the whole-genome sequences of three minke whales, a fin whale, a bottlenose dolphin and a finless porpoise. Our comparative genomic analysis identified an expansion in the whale lineage of gene families associated with stress-responsive proteins and anaerobic metabolism, whereas gene families related to body hair and sensory receptors were contracted. Our analysis also identified whale-specific mutations in genes encoding antioxidants and enzymes controlling blood pressure and salt concentration. Overall the whale-genome sequences exhibited distinct features that are associated with the physiological and morphological changes needed for life in an aquatic environment, marked by resistance to physiological stresses caused by a lack of oxygen, increased amounts of reactive oxygen species and high salt levels.


Subject(s)
Adaptation, Physiological/genetics , Genome , Minke Whale/genetics , Animals , Blood Pressure/genetics , Glutathione/metabolism , Haptoglobins/genetics , Male , Minke Whale/metabolism , Multigene Family , Mutation , Pacific Ocean , Phylogeny , Population Density , Salt Tolerance , Stress, Physiological
18.
Int J Syst Evol Microbiol ; 63(Pt 11): 4006-4011, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23710056

ABSTRACT

A Gram-staining-negative, non-motile, spore-forming, rod-shaped, marine bacterial strain, CL-KR2(T), was isolated from tropical seawater near Kosrae, an island in the Federated States of Micronesia. Analysis of the 16S rRNA gene sequence of strain CL-KR2(T) revealed a clear affiliation with the genus Gracilimonas. Based on phylogenetic analysis, strain CL-KR2(T) showed the closest phylogenetic relationship to Gracilimonas tropica CL-CB462(T), with 16S rRNA gene sequence similarity of 96.6 %. DNA-DNA relatedness between strain CL-KR2(T) and G. tropica CL-CB462(T) was 6.7 % (reciprocal 9.5 %). Strain CL-KR2(T) grew in the presence of 1-20 % sea salts and the optimal salt concentration was 3.5-5 %. The temperature and pH optima for growth were 35 °C and pH 7.5. The major cellular fatty acids (≥10.0 %) of strain CL-KR2(T) were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and iso-C17 : 1ω9c and the only isoprenoid quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, two unidentified glycolipids and two unidentified lipids. The genomic DNA G+C content of strain CL-KR2(T) was 43.2 mol%. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain CL-KR2(T) could be distinguished from the only member of the genus Gracilimonas with a validly published name. Thus, strain CL-KR2(T) should be assigned to a novel species in the genus Gracilimonas, for which the name Gracilimonas rosea sp. nov. is proposed. The type strain is CL-KR2(T) ( = KCCM 90206(T) = JCM 18898(T)).


Subject(s)
Bacteroidetes/classification , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Micronesia , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry , Water Microbiology
19.
Stand Genomic Sci ; 9(1): 197-204, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24501656

ABSTRACT

A photoautotrophic cyanobacterium, Rubidibacter lacunae was reported in 2008 for the first time. The type strain, KORDI 51-2(T), was isolated from seawater of Chuuk lagoon located in a tropical area. Although it belonged to a clade exclusively comprised of extremely halotolerant strains by phylogenetic analyses, R. lacunae is known to be incapable of growth at high salt concentration over 10%. Here we report the main features of the genome of R. lacunae strain KORDI 51-2(T). The genome of R. lacunae contains a gene cluster for phosphonate utilization encoding three transporters, one regulator and eight C-P lyase subunits.

20.
FEMS Microbiol Ecol ; 69(3): 439-48, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19624741

ABSTRACT

Phylogenetic relationships among 33 Synechococcus strains isolated from the East China Sea (ECS) and the East Sea (ES) were studied based on 16S rRNA gene sequences and 16S-23S rRNA gene internal transcribed spacer (ITS) sequences. Pigment patterns of the culture strains were also examined. Based on 16S rRNA gene and ITS sequence phylogenies, the Synechococcus isolates were clustered into 10 clades, among which eight were previously identified and two were novel. Half of the culture strains belonged to clade V or VI. All strains that clustered into novel clades exhibited both phycoerythrobilin and phycourobilin. Interestingly, the pigment compositions of isolates belonging to clades V and VI differed from those reported for other oceanic regions. None of the isolates in clade V showed phycourobilin, whereas strains in clade VI exhibited both phycourobilin and phycoerythrobilin, which is in contrast to previous studies. The presence of novel lineages and the different pigment patterns in the ECS and the ES suggests the possibility that some Synechococcus lineages are distributed only in geographically restricted areas and have evolved in these regions. Therefore, further elucidation of the physiological, ecological, and genetic characteristics of the diverse Synechococcus strains is required to understand their spatial and geographical distribution.


Subject(s)
Phylogeny , Synechococcus/genetics , Water Microbiology , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Genes, rRNA , Molecular Sequence Data , Pacific Ocean , Phycobilins/metabolism , Phycoerythrin/metabolism , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Synechococcus/classification , Synechococcus/isolation & purification , Urobilin/analogs & derivatives , Urobilin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...